

Guía docente

Fundamentos de la Programación I

Grado en Computación e Inteligencia Artificial

Contenido

1.	¿En qué consiste la asignatura?	2
2.	¿Qué se espera de ti?	2
3.	Metodología	3
4.	Plan de trabajo	4
5.	Sistema y criterios de evaluación	4
6.	Cómo contactar con el profesor	5
7.	Bibliografía	6

1. ¿En qué consiste la asignatura?

La asignatura introduce los fundamentos del pensamiento computacional y del diseño algorítmico, junto con los elementos básicos de un primer lenguaje de programación. Se trabajan tipos de datos y expresiones, entrada/salida, estructuras de control, jerarquía de memoria y nociones elementales de evaluación de rendimiento. Esta formación proporciona la base técnica para asignaturas posteriores de programación, estructuras de datos y desarrollo de software.

Créditos ECTS: 6

Carácter: Básica

Idioma: Castellano

Modalidad: Presencial

Cuatrimestre: 1Q

2. ¿Qué se espera de ti?

A través de las 6 unidades didácticas de la asignatura Fundamentos de la Programación I, se pretenden desarrollar las siguientes competencias y resultados de aprendizaje:

Conocimientos y contenidos:

- C02. Conoce problemas relacionados con las ciencias de la computación y la inteligencia artificial, para aplicar la mejor solución de manera eficiente y oportuna.
- Pensamiento computacional.
- Algoritmos y Sistemas de representación.
- Tipos de datos y expresiones.
- Funciones de Entrada y Salida de datos.
- Estructuras de control de flujo.
- Jerarquía de memoria.
- Evaluación de rendimiento.

Competencias:

• **COM05.** Diseña algoritmos para resolver un problema específico mediante el uso de un lenguaje de programación adecuado y la preparación de un conjunto de datos para su ejecución correcta en una plataforma digital.

- COM08. Desarrolla sistemas o arquitecturas informáticas centralizadas o distribuidas integrando hardware, software y redes para construir soluciones digitales basadas en inteligencia artificial.
- COM14. Escribe programas informáticos con lenguajes de programación modernos para la inteligencia artificial para desarrollar prototipos de soluciones digitales.

Habilidades:

 HD06. Construye interfaces persona-computador para que los sistemas digitales ofrezcan una experiencia de usuario óptima cumpliendo las normas de accesibilidad.

Para alcanzar los objetivos de la asignatura, será necesario que participes en los debates que proponemos, pues de esta manera, conseguirás un aprendizaje más completo y enriquecedor. No queremos alumnos pasivos que reciban una información y que la procesen, queremos alumnos con opinión y con ganas de aprender y aportar otros puntos de vista. Para ello esperamos:

- Que participes en los foros de manera activa y aportando conocimiento y experiencias.
- Que trabajes en las actividades que te proponemos y las entregues en el plazo de tiempo estimado.
- Que seas capaz de valorar la importancia de la familia como agente educativo.
- Que comprendas la importancia de una buena relación familia-centro y cómo podemos mejorar esta relación.
- Que realices todas las consultas que necesites para entender todos los contenidos que tiene este módulo.

3. Metodología

Aquí encontrarás los materiales clave para comenzar tu proceso de aprendizaje.

La **guía docente** y una **clase virtual introductoria** que presentará la asignatura y su enfoque, para que entiendas mejor los contenidos y el contexto en el que trabajaremos.

Esta asignatura se divide en **15 Unidades didácticas**. Para el estudio de cada una de ellas deberás leer, estudiar y superar con éxito todos los materiales que la componen. Son los siguientes:

Materiales y recursos de aprendizaje

• Contenidos teóricos y ejercicios de autocomprobación: en cada unidad encontrarás contenidos de carácter teórico (enriquecidos con enlaces, bibliografía y vídeos) donde el profesor explicará y aclarará partes específicas del temario.

• Actividades de aplicación: intercalados con el contenido teórico se incluyen foros, cuestionarios, tareas y estudios de caso que te permitirán afianzar los conocimientos aplicándolos a la práctica.

Metodologías docentes empleadas

- **Lección Magistral**: explicación de los contenidos fundamentales por parte del profesor en sesiones magistrales.
- Método del caso: análisis de situaciones clínicas o problemas de salud concretos que requieren la aplicación del conocimiento.
- Aprendizaje basado en problemas: resolución de problemas complejos a partir de preguntas generadoras.

Actividades formativas

- Sesiones magistrales- 15 horas: para la exposición de contenidos esenciales.
- Clases dinámicas- 15 horas: orientadas a la participación activa del alumnado.
- Actividades de talleres y/o laboratorios- 15 horas: centradas en la adquisición de destrezas prácticas e instrumentales.
- Elaboración de trabajos o proyectos y resolución de retos- 15 horas.
- Estudio personal, resolución de casos o problemas y búsquedas bibliográficas-82 horas: orientadas a la autonomía del estudiante y al desarrollo de competencias investigadoras.
- Tutorías- 5 horas: seguimiento personalizado del progreso académico.
- Pruebas de conocimiento- 3 horas: cuestionarios, exámenes parciales o finales para valorar la asimilación de contenidos.

4. Plan de trabajo

- Esta asignatura comienza el día 01/10/2025 y finaliza el 16/01/2026.
- El examen final de la asignatura deberá realizarse el día 22/01/2026.

5. Sistema y criterios de evaluación

Aulas **UAX**

En el aula virtual de la asignatura/módulo podrás consultar en detalle las actividades que debes realizar, así como las fechas de entrega, los criterios de evaluación y rúbricas de cada una de ellas.

Tu calificación final, estará en función del siguiente sistema de evaluación:

- El 40% de la nota será la que obtengas en la evaluación continua. Para ello se tendrá en cuenta:
 - Asistencia regular a clases y actividades programadas (10%).
 - La participación activa en discusiones y debates, aportando tus puntos de vista, conocimientos y experiencias (10%).
 - Realización correcta y completa de los casos de uso, actividades individuales y/o grupales (20%).
- El examen final de la asignatura supondrá el: 60% de la nota final

Convocatoria ordinaria

Para superar la asignatura/módulo en convocatoria ordinaria deberás obtener una calificación mayor o igual que 5,0 sobre 10,0 en la calificación final (media ponderada) de la asignatura y, además:

La nota media de todas las actividades en cada asignatura deberá ser igual o mayor de 5,0 sobre 10,0 para promediar con el examen. Al igual que la nota del examen deberá ser igual o mayor de 5,0 sobre 10,0 para promediar con las actividades.

Convocatoria extraordinaria

Para superar la asignatura en convocatoria extraordinaria es necesario obtener una calificación mayor o igual que 5,0 sobre 10,0 en la calificación final (media ponderada) de la asignatura.

Se deben entregar las actividades no superadas en convocatoria ordinaria, tras haber recibido el *feedback* correspondiente a las mismas por parte del profesor, o bien aquellas que no fueron entregadas.

6. Cómo contactar con el profesor

Puedes ponerte en contacto con tu profesor o profesora de la asignatura, a través del **servicio de mensajería del Campus Virtual**, para lo cual deberás acceder al apartado "Mensajes" que encontrarás en la esquina superior derecha. Recibirás respuesta a la mayor brevedad posible.

Asimismo, puedes solicitar una tutoría en los días y horarios fijados en la asignatura accediendo a la Sala de tutorías.

Horario de tutorías:

- Viernes 10/10/2025, a las 15:30
- Viernes 24/10/2025, a las 15:30
- Viernes 07/11/2025, a las 15:30
- Viernes 14/11/2025, a las 15:30

- Viernes 28/11/2025, a las 15:30
- Viernes 19/12/2025, a las 15:30
- Viernes 16/01/2026, a las 15:30

Biodata del docente:

Nombre: Manuel Jesús Navarro Bracho

Correo corporativo: mnavabra@uax.es

Ingeniero en Informática por la Universidad de Málaga, con experiencia docente y profesional en desarrollo de software, sistemas informáticos y gestión tecnológica. Desde 2018 es Personal Docente e Investigador en la Universidad de Málaga, donde imparte asignaturas de Fundamentos de Informática y Programación, así como de Sistemas Informáticos aplicados a distintos sectores. Ha trabajado previamente como programador en GT3 Soluciones, S.L., especializado en ERP y desarrollo en entornos .NET y Visual Basic, y cuenta con experiencia en consultoría tecnológica, administración y formación no reglada. Posee el Máster en Profesorado en la especialidad de Tecnología e Informática, y acredita competencias en múltiples lenguajes de programación (C/C++, Java, Python, SQL) y certificaciones en herramientas Microsoft Office Specialist.

7. Bibliografía

Cuesta, F. (2019). *Introducción a la programación con Python*. Marcombo.

Downey, A. (2015). *Think Python: How to think like a computer scientist* (2.^a ed.). O'Reilly Media.

Guttag, J. V. (2016). *Introduction to computation and programming using Python: With application to understanding data.* MIT Press.

Lutz, M. (2013). Learning Python. O'Reilly Media.

Martelli, A., Ravenscroft, A., & Holden, D. (2017). *Python in a nutshell* (3.^a ed.). O'Reilly Media.

Matthes, E. (2019). Python crash course. No Starch Press.

McKinney, W. (2022). Python for data analysis (3.a ed.). O'Reilly Media.

Ramsey, R., & Goldwasser, M. (2021). *Object-oriented programming in Python*. Franklin, Beedle & Associates.

Santos, J. G. (2017). Python para todos: Explorando datos con Python 3. Reverté.

Sweigart, A. (2020). Automate the boring stuff with Python. No Starch Press.

Zelle, J. M. (2017). *Python programming: An introduction to computer science*. Franklin, Beedle & Associates.

