

Guía docente

Análisis Químico

Contenido

Contenido		2
1.	¿En qué consiste la asignatura?	. 3
2.	¿Qué se espera de ti?	. 3
3.	Metodología	. 4
4.	Sistema y criterios de evaluación	. 5
6.	Cómo contactar con el profesor	. 7
7.	Bibliografía	8

1. ¿En qué consiste la asignatura?

El **Análisis Químico** proporciona las bases teóricas y prácticas para identificar y cuantificar compuestos relevantes en el ámbito de la Química. Incluye el estudio de técnicas clásicas e instrumentales de análisis, comprendiendo sus fundamentos, limitaciones y aplicaciones.

Los contenidos de la asignatura son los siguientes:

- Terminología del análisis químico.
- Errores en análisis químico.
- Toma y preparación de la muestra.
- Métodos de separación analíticos
- Equilibrios iónicos en disolución.
- Métodos volumétricos. Volumetrías.
- Análisis cualitativo clásico.
- Análisis gravimétrico.
- Métodos potenciométricos.

2. ¿Qué se espera de ti?

A través de las unidades didácticas de la asignatura **Análisis Químico**, se pretenden desarrollar las siguientes competencias y resultados de aprendizaje:

Competencias

- 1. **HD11:** Lleva a cabo procesos de laboratorio estándar incluyendo el uso de equipos científicos de síntesis y análisis, instrumentación apropiada incluida.
- 2. **COM12:** Conoce y aplica las técnicas principales de investigación estructural incluyendo la espectroscopía
- 3. **COM27:** Selecciona las técnicas y procedimientos apropiados en el diseño, ampliación y evaluación de reactivos, métodos y técnicas analíticas.
- 4. **COM29:** Es capaz de desarrollar análisis higiénico-sanitarios (bioquímico, bromatológico, microbiológicos, parasitológicos) relacionados con la salud en general y con los alimentos y medio ambiente en particular.
- 5. **COM35:** es capaz de estimar los riesgos asociados a la utilización de sustancias químicas y procesos de laboratorio.

 COM39: Conoce y comprende las características de las reacciones en disolución, los diferentes estados de la materia y los principios de la termodinámica y su aplicación a las ciencias farmacéuticas.

3. Metodología

Aquí encontrarás los materiales clave para comenzar tu proceso de aprendizaje.

La **guía docente** y una **clase virtual introductoria** que presentará la asignatura y su enfoque, para que entiendas mejor los contenidos y el contexto en el que trabajaremos.

Esta asignatura se divide en Unidades didácticas. Para el estudio de cada una de ellas deberás leer, estudiar y superar con éxito todos los materiales que la componen. Son los siguientes:

Materiales y recursos de aprendizaje

- Contenidos teóricos y ejercicios de autocomprobación: en cada unidad encontrarás contenidos de carácter teórico (enriquecidos con enlaces, bibliografía y vídeos) donde el profesor explicará y aclarará partes específicas del temario.
- Actividades de aplicación: intercalados con el contenido teórico se incluyen foros, cuestionarios, tareas y estudios de caso que te permitirán afianzar los conocimientos aplicándolos a la práctica.

Metodologías docentes empleadas

- Lección Magistral: explicación de los contenidos fundamentales por parte del profesor en sesiones magistrales.
- **Aprendizaje basado en problemas:** resolución de problemas complejos a partir de preguntas generadoras.
- **Aprendizaje basado en retos:** desarrollo de proyectos que plantean un desafío real relacionado con la práctica.
- Entornos de simulación: actividades prácticas que reproducen escenarios para favorecer la toma de decisiones y la adquisición de habilidades.
- **Aprendizaje experiencial**: actividades que permiten aprender a partir de la práctica directa y la reflexión sobre la experiencia.

- Enseñanzas de taller y habilidades instrumentales: entrenamiento en procedimientos y técnicas básicas.
- **Aprendizaje colaborativo:** dinámicas grupales que fomentan la cooperación y la construcción conjunta de conocimiento.

Actividades formativas

- Sesiones magistrales- 15 horas: para la exposición de contenidos esenciales.
- Clases participativas-15 horas: orientadas a la participación activa del alumnado.
- Actividades de talleres y/o laboratorios- 15 horas: centradas en la adquisición de destrezas prácticas e instrumentales.
- Elaboración de proyectos y resolución de retos- 15 horas
- Estudio personal, resolución de casos o problemas y búsquedas bibliográficas 82 horas: orientadas a la autonomía del estudiante y al desarrollo de competencias investigadoras.
- Tutorías- 5 horas: seguimiento personalizado del progreso académico.
- **Pruebas de conocimiento- 3 horas:** cuestionarios, exámenes parciales o finales para valorar la asimilación de contenidos.

4. Sistema y criterios de evaluación

Aulas **UAX**

En el aula virtual de la asignatura/módulo podrás consultar en detalle las actividades que debes realizar, así como las fechas de entrega, los criterios de evaluación y rúbricas de cada una de ellas.

Sin perjuicio de que se pueda definir otra exigencia en el correspondiente programa de asignatura, con carácter general, la falta de asistencia a más del 70% de las actividades formativas de la asignatura, que requieran la presencia del estudiante, tendrá como consecuencia la pérdida del derecho a la evaluación continua en la convocatoria ordinaria. La asistencia al 100% de las horas de las clases prácticas será obligatoria para poder presentarse al examen de prácticas en la fecha prevista. En caso de perder la evaluación continua, el examen a celebrar en el período oficial establecido por la Universidad será el único criterio de evaluación con el porcentaje que le corresponda según el programa de la asignatura.

Para superar esta asignatura es necesario tener en cuenta los siguientes apartados:

- 1. <u>Materia impartida en clases dinámicas</u>: 50 % nota final (Relación con las competencias C1-C8 y relación con los resultados de aprendizaje 1, 4, 5 y 7).
- Parcial 1: Temas 1 al 6 (25% nota final)

Será un examen liberatorio con una nota igual o superior a 5. No se podrán compensar parciales. En caso de que obtenga una nota inferior a 5, el alumno se deberá examinar en la convocatoria ordinaria/extraordinaria.

2. <u>Prácticas de laboratorio</u>: 20% de la nota final (Relación con las competencias C6-C9 y Relación con los resultados de aprendizaje 2-4, 6, 8). La falta de puntualidad, asistencia o buen comportamiento obligará al estudiante a examinarse en la convocatoria oficial, perdiendo la opción de realizar el examen práctico en su fecha prevista.

La nota mínima de prácticas para hacer media con las demás notas de evaluación continua será un 5. La realización de las prácticas es obligatoria.

Importante: En caso de no superar la parte práctica, el estudiante deberá recuperar esta parte en la convocatoria ordinaria.

- 3. <u>Trabajo del alumno</u>: 30% nota final (Relación con las competencias C1-C8 y Relación con los resultados de aprendizaje 1-2, 4-5,7-8).
- 15% Actividades de clase (test, seminarios, salida a pizarra)
- 15% Entrega de trabajos de la asignatura.

Es necesario aprobar la parte práctica de la asignatura para poder superarla en su totalidad.

CONVOCATORIA ORDINARIA

El alumno se examinará del primer bloque de unidades didácticas en el primer parcial. Si se supera el primer parcial con una nota igual o superior a 5, en la convocatoria ordinaria el alumno podrá optar a presentarse en el examen al segundo bloque de unidades didácticas, siempre y cuando haya asistido a un porcentaje igual o superior al 70% de las horas correspondientes a la asignatura.

En caso de que el alumno no haya superado el primer parcial con una nota igual o superior a 5, deberá presentarse a la convocatoria ordinaria de examen con la asignatura completa. Para superar la asignatura en la convocatoria ordinaria sin evaluación continua es necesario obtener una calificación igual o superior a 5 en el examen. No se contabilizará la puntuación obtenida por el cuaderno de prácticas de laboratorio u otras actividades si no se ha alcanzado un 5 como nota mínima en el examen de convocatoria ordinaria.

CONVOCATORIA EXTRAORDINARIA

El alumno se examinará de todo el temario de la asignatura. No se contabilizará la puntuación obtenida por el cuaderno de prácticas de laboratorio u otras actividades si no se ha alcanzado un 5 como nota mínima en el examen de convocatoria extraordinaria.

6. Cómo contactar con el profesor

Puedes ponerte en contacto con tu profesor o profesora de la asignatura, a través del **servicio de mensajería del Campus Virtual**, para lo cual deberás acceder al apartado

"Mensajes" que encontrarás en la esquina superior derecha. Recibirás respuesta a la mayor brevedad posible.

Asimismo, puedes solicitar una tutoría en los días y horarios fijados en la asignatura accediendo a la Sala de tutorías.

Profesora: Dra. Ana Calvo Fornieles (Teoría).

Biodata del claustro

Ana Calvo Fornieles (Docente)

Doctora en Química por la Universidad de Málaga (UMA). Posee el título de Máster en Química Avanzada para la Preparación y Caracterización de Materiales, así como el Máster en Análisis Clínicos —ambos por la Universidad de Málaga— y el Máster en Prevención de Riesgos Laborales por la Universidad Europea de Madrid.

Cuenta con el Certificado de Aptitud Pedagógica (C.A.P.) por la Universidad de Granada y ha cursado estudios en el Grado de Economía.

Inició su trayectoria investigadora en 2008, impulsada por su interés en el ámbito científico, desarrollando su labor como química investigadora en la Universidad de Málaga, donde ha trabajado en el Desarrollo y Optimización de Métodos Analíticos para la Determinación de Contaminantes en Muestras Naturales. Sus resultados científicos se reflejan en diversas publicaciones en revistas especializadas, entre ellas Journal of Analytical Atomic Spectrometry y Microchemical Journal. Asimismo, ha desarrollado su labor profesional como analista químico en el área de control de calidad de productos químicos.

Cuenta con una destacada trayectoria docente, habiendo impartido clases en distintos niveles educativos, desde el universitario hasta la educación secundaria obligatoria, pasando por bachillerato y formación profesional en el ámbito farmacéutico y sanitario.

Su vocación docente se fundamenta en el convencimiento de que la enseñanza de las ciencias constituye una herramienta esencial para despertar la curiosidad, el pensamiento crítico y el deseo de aprender en cada estudiante.

7. Bibliografía

Básica:

1.- D. A. Skoog et al

"Química analítica" Vol 2: Reverté

ISBN: 8429175555

2.- Harris, Daniel C.

Análisis químico cuantitativo: 2ª Ed.: Barcelona [etc.]: Reverté, 2001

ISBN: 842917222X

3.- Harris, Daniel C.

Análisis químico cuantitativo: Barcelona [etc.]: Reverté

ISBN: 8429172246

4.- J. A. López Cancio

Problemas resueltos de química analítica: Thomson

ISBN: 9788497323482

5.- Mueller-Harvey, I.

El análisis químico en el laboratorio: guía básica: Zaragoza: Acribia, 2002

ISBN: 8420010480

6.- Silva, Manuel

Equilibrios iónicos y sus aplicaciones analíticas: Madrid: Síntesis, 2002

ISBN: 8497560256

7.- Walton, Harold F.

Análisis químico e instrumental moderno: Barcelona: Reverté, 1983

ISBN: 8429175199

8.- Yáñez-Sedeño Orive, Paloma Problemas resueltos de química analítica: Madrid: Síntesis, 2003 ISBN: 849756071X

Enlaces:

Introducción a la Química Analítica. Extracto introductorio de una gravimetría en Química Analítica. http://www.chromedia.org/dchro/up/ZkwurgiJM A Chem 2.0 Chapter1.pdf

